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Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning
are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases
the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially
and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic
algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated
for different model parameters using numerical simulations. The results show that scaling laws observed in the
case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective
attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian
and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic
depth is small compared to the square root of the system size.
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I. INTRODUCTION

Neural cryptography �1,2� is based on the effect that two
neural networks are able to synchronize by mutual learning
�3,4�. In each step of this online learning procedure they
receive a common input pattern and calculate their output.
Then, both neural networks use those outputs presented by
their partner to adjust their own weights. So, they act as
teacher and student simultaneously. Finally, this process
leads to fully synchronized weight vectors.

Synchronization of neural networks is, in fact, a complex
dynamical process. The weights of the networks perform
random walks, which are driven by a competition of attrac-
tive and repulsive stochastic forces �5�. Two neural networks
can increase the attractive effect of their moves by cooperat-
ing with each other. But, a third network which is only
trained by the other two clearly has a disadvantage, because
it cannot skip some repulsive steps. Therefore, bidirectional
synchronization is much faster than unidirectional learning
�2�.

This effect can be applied to solve a cryptographic prob-
lem: Two partners A and B want to exchange a secret mes-
sage. A encrypts the message to protect the content against
an opponent E, who is listening to the communication. But,
B needs A’s key in order to decrypt the message. Therefore,
the partners have to use a cryptographic key-exchange pro-
tocol �6� in order to generate a common secret key. This can
be achieved by synchronizing two neural networks, one for A
and one for B, respectively. The attacker E trains a third
neural network using inputs and outputs transmitted by the
partners as examples. But, on average, learning is slower
than synchronization. Thus, there is only a small probability
PE that E is successful before A and B synchronize �2�.

While other cryptographic algorithms use complicated
calculations based on number theory �6�, the neural key-
exchange protocol only needs basic mathematical operations,
namely adding and subtracting integer numbers. These can

be realized efficiently in integrated circuits. Computer scien-
tists are already working on an hardware implementation of
neural cryptography �7–10�.

Since the first proposal �1� of the neural key-exchange
protocol, improved strategies for the attackers �11,12� and
the partners �5,13,14� have been suggested and analyzed
�2,15–17�. For the geometric attack it has been found that the
synaptic depth L determines the security of the system: the
success probability PE decreases exponentially with L, while
the synchronization time tsync increases only proportionally
to L2 �17,18�. Therefore, any desired level of security against
this attack can be reached by increasing L.

An improved version of this method is the majority attack
�12�. Here, a group of M neural networks estimates the out-
put of B’s hidden units. But, instead of updating the weights
individually, E’s tree parity machines cooperate and adjust
the weight vectors in the same way according to the majority
vote. While using this method increases PE, the scaling laws
hold except for one special learning rule and random inputs
�12,14�. Therefore, neural cryptography is secure against this
attack in the limit L→�, too.

In this paper we analyze a different method for the oppo-
nent E. The genetic attack �11� is not based on optimal learn-
ing like the majority attack �12�, but employs a genetic algo-
rithm in order to select the most successful of E’s neural
networks. First, we repeat the definition of the neural key-
exchange protocol in Sec. II. We also explain why A and B
have a clear advantage over E. The algorithm of the genetic
attack is presented in Sec. III. Here, we show that the scaling
behavior observed for the geometric attack and the majority
attack also holds for the genetic attack. In Sec. IV we ana-
lyze the influence of the learning rules on synchronization
and learning. Finally, the known attacks on the neural key-
exchange protocol are compared regarding their efficiency.
The results presented in Sec. V show that the genetic attack
is less efficient than the majority attack except for some spe-
cial cases.
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II. NEURAL CRYPTOGRAPHY

In this section we repeat the definition of the neural key-
exchange protocol �1�. Each partner, A and B, uses a tree
parity machine. The structure of this neural network is shown
in Fig. 1. A tree parity machine consists of K hidden units,
which work like perceptrons. The possible input values are
binary,

xij � �− 1, + 1� , �1�

and the weights are discrete numbers between −L and +L,

wij � �− L,− L + 1, . . . ,L − 1,L� . �2�

Here, the index i=1, . . . ,K denotes the ith hidden unit of the
tree parity machine and j=1, . . . ,N the elements in each vec-
tor. The output of the first layer is defined as the sign of the
scalar product of inputs and weights,

�i = sgn�wi · xi� . �3�

And, the total output of the tree parity machine is given by
the product �parity� of the hidden units,

� = �
i=1

K

�i. �4�

At the beginning of the synchronization process A and B
initialize the weights of their neural networks randomly. This
initial state is kept secret. In each time step t, K random input
vectors xi are generated publicly and the partners calculate
the outputs �A and �B of their tree parity machines. After
communicating the output bits to each other they update the
weights according to one of the following learning rules:

�i� Hebbian learning

wi
+ = wi + �ixi���i�����A�B� , �5�

�ii� Anti-Hebbian learning

wi
+ = wi − �ixi���i�����A�B� , �6�

�iii� Random walk

wi
+ = wi + xi���i�����A�B� . �7�

If any component of the weight vectors moves out of the
range −L , . . . , +L, it is replaced by the nearest boundary
value, either −L or +L.

After some time tsync the partners have synchronized their
tree parity machines, wi

A�tsync�=wi
B�tsync�, and the process is

stopped. Afterwards, A and B can use the weight vectors as a
common secret key in order to encrypt and decrypt secret
messages.

We describe the process of synchronization by standard
order parameters, which are also used for the analysis of
online learning �19�. These order parameters are

Qi
m =

1

N
wi

m · wi
m, �8�

Ri
m,n =

1

N
wi

m · wi
n, �9�

where the indices m ,n� �A ,B ,E� denote A’s, B’s, or E’s tree
parity machine, respectively. The level of synchronization
between two corresponding hidden units is defined by the
�normalized� overlap,

�i
m,n =

wi
m · wi

n

�wi
m · wi

m�wi
n · wi

n
=

Ri
m,n

�Qi
mQi

n
. �10�

Uncorrelated weight vectors have �=0, while the maximum
value �=1 is reached for full synchronization.

The overlap between two corresponding hidden units in-
creases if the weights of both neural networks are updated in
the same way. Coordinated moves, which occur for identical
�i, have an attractive effect.

Changing the weights in only one hidden unit decreases
the overlap on average. These repulsive steps can only occur
if the two output values �i are different. The probability for
this event is given by the well-known generalization error of
the perceptron �19�,

�i =
1

�
arccos �i, �11�

which itself is a function of the overlap �i between the hid-
den units. For an attacker who simply trains a third tree
parity machine using the examples generated by A and B,
repulsive steps occur with probability Pr

E=�i, because E can-
not influence the process of synchronization.

In contrast, A and B communicate with each other and are
able to interact. If they disagree on the total output, there is
at least one hidden unit with �i

A��i
B. As an update would

have a repulsive effect, the partners just do not change the
weights. In doing so, A and B reduce the probability of re-
pulsive steps in their hidden units. For K=3 and identical
generalization error, �i=�, we find �5�

Pr
B =

2�1 − ���2

�1 − ��3 + 3�1 − ���2 	 � = Pr
E. �12�

Therefore, the partners have a clear advantage over an at-
tacker using only simple learning.

But, E can use a more advanced method called geometric
attack. As before, she trains a third tree parity machine,
which has the same structure as A’s and B’s. In each step �E

is calculated and compared to �B. As long as these output
values are identical, E can apply the learning rule in the same
manner as B. But, if �E��B, the attacker has to correct this
deviation before updating the weights.

For this purpose E uses the local field

FIG. 1. Tree parity machine with K=3 and N=4.
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hi =
1

�N
wi · xi �13�

of her hidden units as additional information. Then, the prob-
ability of �i

B��i
E is given by the prediction error of the

perceptron �20�,

�i��i,hi� =
1

2	1 − erf
 �i

�2�1 − �i
2�

�hi�
�Qi

� . �14�

If the local field hi is zero, the neural network has no infor-
mation about the input vector xi, because it is perpendicular
to the weight vector wi. In this case the prediction error
reaches its global maximum of �i��i ,0�=1/2.

The prediction error �i��i ,hi� is a strictly monotonic de-
creasing function of �hi�. Therefore, the attacker searches the
hidden unit with the lowest value of the absolute local field
�hi

E� and flips the sign of �i
E. This results in �E=�B and the

learning rule can be applied. But, the geometric attack does
not always find the correct hidden unit which caused the
deviation of the total output bits. If �i

E��i
B in the ith hidden

unit and � j
E=� j

B in all other hidden units, E flips the sign of
�i

E with probability

Pg = �
0

�

�
j�i

�

hi

��2�

Qj

1 − � j�� j,hj�
� − arccos � j

e−hj
2/�2Qj�dhj�


�2�

Qi

�i��i,hi�
arccos �i

e−hi
2/�2Qi�dhi. �15�

Thus, the geometric attacker avoids some repulsive steps,
although they still occur more frequently than in the part-
ners’ tree parity machines.

In the case of identical generalization error �i=� and K
=3, we find that the probability of repulsive steps,

Pr
E = 2�1 − Pg��1 − ��2� + 2�1 − ���2 +

2

3
�3, �16�

is higher than Pr
B, but lower than Pr

E=� for simple learning.
This result is clearly visible in Fig. 2. That is why learning
by listening is slower than mutual learning, even for ad-
vanced algorithms. This effect makes neural cryptography

feasible and prevents successful attacks in the limit L→�.
Recently, it has been discovered that the security of the

neural key-exchange protocol can be improved by using que-
ries instead of random inputs �14,21�. The partners ask ques-
tions to each other which depend on their own weight vec-
tors wi and an additional public parameter H. In odd �even�
steps A �B� generates K input vectors xi with hi

A� ±H �hi
B

� ±H�. So, the absolute value of the local field hi is given by
H, while its sign �i is chosen randomly.

Queries change the relation between the overlap and the
frequency Pr of repulsive steps. The probability of different
outputs �i in corresponding hidden units is now given by Eq.
�14� instead of Eq. �11�, because the absolute local field in
A’s or B’s hidden units is known. Consequently, the partners
can optimize complexity and security of the neural key-
exchange protocol by adjusting H and L suitably �14�.

As shown in Fig. 3, a minimum value of H is needed in
order to achieve synchronization in a reasonable number of
steps. If H��cL, tsync increases proportional to L2 ln N, but
for H�cL it diverges �14,18�. In the case of the random
walk learning rule we estimate �c�0.31 by using the ex-
trapolation method described in �14�.

III. GENETIC ATTACK

For the genetic attack �11� the opponent starts with only
one tree parity machine, but she can use up to M neural
networks. As before E calculates the output of her networks
in each step. Afterwards, the following genetic algorithm is
applied:

�i� If �A=�B and E has at most M /2K−1 tree parity ma-
chines, she determines all 2K−1 internal representations
��1

E , . . . ,�K
E� which reproduce the output �A. Then, these are

used to update the weights in E’s neural networks according
to the learning rule, so that 2K−1 variants of each tree parity
machine are generated.

�ii� But, if E already has more than M /2K−1 neural net-
works, the mutation step described above is not possible.
Instead of that the attacker discards all tree parity machines
which predicted less than U outputs �A in the last V learning
steps, with �A=�B, successfully. In our simulations we use a
limit of U=10 and a history of V=20 as default values. Ad-

FIG. 2. Probability Pr of repulsive steps as a function of the
generalization error �. The inset shows the probability Pg for a
successful geometric correction.

FIG. 3. Synchronization time tsync as a function of H for K=3,
N=1000, random walk learning rule, and different values of L,
averaged over 10 000 simulations.
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ditionally, at least 20 neural networks are kept in such a
selection step.

�iii� In the case of �A��B the attacker’s networks remain
unchanged, because A and B do not update the weights in
their tree parity machines.

The attack is considered successful if at least one of E’s
neural networks has synchronized 98% of the weights before
the end of the key exchange. We use this relaxed criterion in
order to decrease the fluctuations of PE �17�.

The success probability of the genetic attack strongly de-
pends on the value of the parameter H. This effect is clearly
visible in Fig. 4. In order to determine PE as a function of H,
a Fermi-Dirac distribution

PE =
1

1 + exp�− ��H − ���
�17�

with two parameters � and � can be used as a fitting model.
This equation is also valid for the geometric attack and the
majority attack �14�.

Figure 5 shows the results of the fits using Eq. �17�. While

� is nearly independent of L and M, � increases linearly
with the synaptic depth,

� = �sL + � . �18�

Obviously, the attacker can change the offset �, but not �s,
by using more resources. As shown in Fig. 6 E needs to
double M in order to decrease � by a fixed amount � ln 2.
Thus, � is a linear function of both L and ln M,

� = �sL − � ln M + �0. �19�

Substituting Eq. �19� into Eq. �17� leads to

PE =
1

1 + exp����0 − � ln M��exp����s − ��L�
�20�

for the success probability of the genetic attack as a function
of �=H /L, the synaptic depth L, and the maximal number of
attackers M.

From these results we can deduce the scaling of PE with
regard to L and M. For large values of the synaptic depth the
asymptotic behavior is given by

PE � e−���0−� ln M�e−���s−��L �21�

as long as ��s.
This equation shows that that the partners have a great

advantage over an attacker. If A and B increase L, the success
probability drops exponentially,

PE � e−���s−��L, �22�

while the complexity of the synchronization rises only poly-
nomially. This is clearly visible if one looks at the function
PE��tsync��, which is shown in Fig. 7. Due to the offset � in
Eq. �18� the attacker is successful for small values of L. But,
for larger synaptic depth optimal security is reached for val-
ues of H and L, which lie on the envelope of PE��tsync��. This
curve is approximately given by H=�cL, as this condition
maximizes �s−� while synchronization is still possible �14�.

In contrast, the attacker has to increase the number of her
tree parity machines exponentially,

FIG. 4. Success probability PE of the genetic attack for K=3,
N=1000, random walk learning rule, and M =4096. Symbols repre-
sent results obtained from 1000 simulations, and the lines show a fit
with Eq. �17�.

FIG. 5. Parameters � and � as a function of the synaptic depth
L. Symbols denote results of fitting simulation data for different M
with Eq. �17� and the lines were calculated using the model given in
Eq. �19�.

FIG. 6. Offset � as a function of the number of attackers M, for
K=3, N=1000, and the random walk learning rule. Symbols and the
line were obtained by a fit with Eq. �19�.
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M � e���s−��/��L, �23�

in order to compensate a change of L and maintain a constant
success probability PE. But, this is usually not possible due
to limited computer power.

Alternatively, the attacker could try to optimize the other
two parameters of the genetic attack. As shown in Fig. 8, E
obtains the best result if she uses U=30, V=50 instead of
U=10, V=20. Figure 5 shows that this modification leads to
a lower value of �, but does not influence ��L�. Therefore, E
gains little, as the scaling relation �23� is not affected. That is
why A and B can easily reach an arbitrary level of security.

IV. LEARNING RULES

Beside the random walk learning rule �7� used so far,
there are two other suitable algorithms for updating the
weights: the Hebbian learning rule �5� and the anti-Hebbian
learning rule �6�. The only difference between these three
rules is whether and how the output �i of the hidden unit is
included in the update step. But, this causes some effects
which we discuss in this section.

In the case of the Hebbian rule A’s and B’s tree parity
learn their own output. Therefore, the direction in which the
weight wij moves is determined by the product �ixij. But, as
the output of a hidden unit is a function of all input values,
there are correlations between xij and �i. That is why the
probability distribution of �ixij is not uniformly distributed in
the case of random inputs, but depends on the corresponding
weight wij,

P��ixij = 1� =
1

2	1 + erf
 wij

�NQi − wij
2 � . �24�

According to this equation, �ixij =sgn�wij� occurs more often
than �ixij =−sgn�wij�. Thus, the Hebbian learning rule �5�
pushes the weights towards the boundaries at −L and +L.

In order to quantify this effect we calculate the stationary
probability distribution of the weights. Using Eq. �24� for the
transition probabilities leads to

P�wij = w� = p0�
m=1

�w� 1 + erf
 m − 1
�NQi − �m − 1�2�

1 − erf
 m
�NQi − m2�

, �25�

whereas the normalization constant p0 is given by

p0 =� �
w=−L

L

�
m=1

�w� 1 + erf
 m − 1
�NQi − �m − 1�2�

1 − erf
 m
�NQi − m2� �

−1

. �26�

In the limit N→� the argument of the error function van-
ishes and the weights are uniformly distributed. In this case
the synchronization process does not change the initial
length

�Qi�t = 0� =�L�L + 1�
3

�27�

of the weight vector.
But, for finite N the probability distribution �25� itself

depends on the order parameter Qi. Therefore, the expecta-
tion value of Qi is the solution of the following equation:

Qi = �
w=−L

L

w2P�wij = w� . �28�

By expanding Eq. �28� in terms of N−1/2 we obtain

Qi =
L�L + 1�

3
+

8L4 + 16L3 − 10L2 − 18L + 9

15�3�L�L + 1�
1

�N
+ O
L4

N
�

�29�

as a first-order approximation of Qi for large system sizes. In
the case of 1�L��N the asymptotic behavior of this order
parameter is given by

FIG. 7. Success probability of the genetic attack as a function of
the synchronization time for K=3, N=1000, random walk learning
rule, M =4096, and different values of L. The dashed line shows the
envelope of this set of curves.

FIG. 8. Success probability of the genetic attack for K=3, L
=7, N=1000, random walk learning rule, M =4096, and H=2.28.
These results were obtained by averaging over 100 simulations.
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Qi �
L�L + 1�

3 
1 +
8

5�3�

L
�N

� . �30�

Obviously, the application of the Hebbian learning rule in-
creases the length of the weight vectors wi until a steady
state is reached. Additionally, the changed probability distri-
bution of the weights affects the synchronization process and
the success of attacks. That is why one encounters finite-size
effects if L /�N is large �17�.

In the case of the anti-Hebbian rule A’s and B’s tree parity
machines learn the opposite of their own outputs. Therefore,
the weights are pulled away from the boundaries, so that

Qi =
L�L + 1�

3
−

8L4 + 16L3 − 10L2 − 18L + 9

15�3�L�L + 1�
1

�N
+ O
L4

N
�

�31�

�
L�L + 1�

3 
1 −
8

5�3�

L
�N

� �32�

for 1�L��N. Here, the length of the weight vectors wi is
decreased.

In contrast, the random walk learning rule always uses a
fixed set output. Here, the weights stay uniformly distributed,
because only the random input values xij determine the di-
rection of the movements. In this case the length of the
weight vectors is given by Eq. �27�.

Figure 9 shows that the theoretical predictions are in good
quantitative agreement with simulation results as long as L2

is small compared to the system size N. The deviations for
large L are caused by higher-order terms which are ignored
in Eq. �29� and Eq. �31�.

The choice of the learning rule affects synchronization
with random inputs as well as with queries. As the prediction
error �14� is a function of hi /�Qi, this ratio instead of just the
local field determines the behavior of the system. That is
why there are different values of �c and �s for each learning
rule, which is shown in Fig. 10 and Fig. 11.

In the limit N→�, however, a system using Hebbian or
anti-Hebbian learning exhibits the same dynamics as ob-

served in the case of the random walk rule for all system
sizes. This is clearly visible in Fig. 11. Consequently, one can
determine the properties of neural cryptography in the limit
N→� without actually analyzing very large systems. It is
sufficient to use the random walk learning rule and moderate
values of N in simulations.

V. SECURITY

In order to assess the security of the neural key-exchange
protocol one has to consider all known attacks. Therefore,
we compare the efficiency of several methods here.

Figure 12 shows that the success probability PE drops
exponentially with increasing synaptic depth L,

PE � e−y�L−L0�, �33�

as long as L�L0. While this scaling behavior is the same for
all attacks, the constants y and L0 are different for each
method.

The geometric attack is the simplest method considered
here. E only needs one tree parity machine, but the success
probability PE is lower than for the advanced methods. As
the exponent y is large, the two partners can easily secure the
neural key-exchange protocol by increasing the synaptic
depth �17�.

FIG. 9. Length of the weight vectors in the steady state for K
=3 and N=1000. Symbols denote results averaged over 1000 simu-
lations and lines show the first-order approximation given in Eq.
�29� and Eq. �31�.

FIG. 10. Parameter � and � as a function of L for the genetic
attack with K=3, N=1000, and M =4096. The symbols represent
results from 1000 simulations and the lines show a fit using the
model given in Eq. �19�.

FIG. 11. Synchronization time tsync as a function of H for K
=3, L=7, averaged over 100 simulations.
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In the case of the majority attack PE is higher, because the
cooperation between E’s tree parity machines reduces the
coefficient y. A and B have to compensate this by further
stepping up L. In contrast, the genetic attack increases L0,
while y does not change significantly compared to the geo-
metric attack. Therefore, the genetic algorithm is better only
if L is not too large. Otherwise E gains most by using the
majority attack.

As shown in Fig. 12 the partners can improve the security
of the key-exchange protocol against all three attacks by us-
ing queries. However, the majority attack remains the most
efficient of E’s methods.

We note that these results are based on numerical extrapo-
lations of the success probability PE. While analytical evi-
dence for the complexity of a successful attack would be
desirable, it is not available yet in the case of the nondeter-

ministic methods with PE1 discussed above. But, there are
only two successful deterministic algorithms for E known at
present: a brute-force attack or a genetic attack with M
=2�K−1�tsync networks. The complexity of these attacks clearly
grows exponentially with increasing L. Therefore, breaking
the security of neural cryptography belongs to the complex-
ity class NP �nondeterministic polynomial time�, but we can-
not prove that it is not in P �polynomial time�. This situation
is similar to that of other cryptographic protocols, e.g., the
Diffie-Hellman key exchange �6�.

VI. CONCLUSIONS

The security of cryptographic algorithms is usually based
on different scaling laws regarding the computational com-
plexity for users and attackers. By changing some parameter
one can increase the cost of a successful attack exponentially,
while the effort for the users increments only polynomially.
For conventional cryptographic systems this parameter is the
length of the key. In the case of neural cryptography it is the
synaptic depth L of the neural networks.

As the neural key-exchange protocol uses tree parity ma-
chines, an attacker faces the challenge to guess the internal
representation of these networks correctly. Learning alone is
not sufficient to solve this problem. Otherwise the scaling
laws hold and the partners can achieve any desired level of
security by increasing L.

We have analyzed an attack, which combines learning
with a genetic algorithm. We have found that this method is
very successful as long as L is small. But, attackers have to
increase the number of their neural networks exponentially
in order to compensate higher values of L. That is why neu-
ral cryptography is secure against the genetic attack as well.

This method achieves the best success probability of all
known methods only if the synaptic depth L is not too large.
For higher values of L the attacker gains more by using the
majority attack. But, both methods are unable to break the
security of the neural key-exchange protocol in the limit L
→�.

Additionally, we have studied the influence of different
learning rules on the neural key-exchange protocol. Hebbian
and anti-Hebbian learning change the order parameter Q,
which is related to the length of the weight vectors. If the
system size N is small compared to L2, this causes finite-size
effects. But, in the limit L /�N→0 the behavior of all learn-
ing rules converges to that of the random walk rule.

Based on our results, we conclude that the neural key-
exchange protocol is secure against all attacks known up to
now. But—similar to other cryptographic algorithms—there
is always a possibility that a clever method may be found
which destroys the security of neural cryptography com-
pletely.
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